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Abstract
Properties of constant-speed uniform random walks in bounded convex bodies
are presented. Average quantities such as the mean length of the trajectories are
expressed only according to the first moments of the chord length distribution.
Some analytical results are then extended to the case of purely diffusive random
walks. Exact results for convex geometric objects of simple shape in two and
three dimensions illustrate our points.

PACS numbers: 02.50.−r, 02.70.Rr, 05.40.Fb

1. Introduction

Pearson random walks [1], consisting of a sum of n random vectors with the same probability
density function, arise in a large variety of physical phenomena depending on the probabilistic
law for independent random jumps. For instance, isotropic random flights having fixed length
have application in polymer chains in three dimensions [2]; it also concerns planar two-
dimensional locomotion problems in biology [3]. An exponential law 1/λ exp[−r/λ] has
application to neutron diffusion processes [4]. An analytical expression for the probability
density function of the length of the vector sum has been derived, since the initial work of
Rayleigh for the case of constant jumps [5], by Chandrasekhar [6] and Flory [2], in terms of
an infinite integral with an oscillatory integrand. However, even though the problem is well
understood for Pearson random walks in unbounded spaces and in arbitrary dimensions, very
little has been done for such random walks in bounded spaces. Indeed, a process evolving
inside a domain with boundaries leads to new difficulties when it escapes from the domain.
For such processes, the quantities of importance are the average time spent inside the domain
before leaving (first exit time), the mean length of the trajectory (this last quantity requiring the
mean length of the last jump) and their corresponding probability density functions. Although
escape processes and first exit times are thoroughly covered in the literature in particular for
Brownian motion [7], for the vast majority of models based on Markov jump processes no
purely analytical solutions for the first exit time exist. In this paper, we report the exact solution
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for the special case of constant-speed uniform random walks in bounded convex bodies using
techniques arising from integral geometry. In particular, we focus on the mean length of the
trajectories (or first exit time since the particle travels at constant velocity), the mean number
of collisions and related quantities. The paper is organized as follows. After reviewing briefly
the concepts and the useful results of integral geometry, we derive within this framework
the important statistical quantities of the random walks in term of chord length distributions.
Then, exact results illustrate our points in two and three dimensions, followed by a conclusion.

2. Concepts and results from integral geometry: chord length
distribution and related quantities

Chord length distributions appear when convex bodies are intercepted by random straight
lines [8, 9]. These distribution functions are a powerful tool for the description of the size and
shape of the intercepted object. It has applications in various fields such as acoustics [10],
ecology [11], image analysis [12], stereology [13] and reactor design [14, 15]. Chord length
distributions are also fundamental functions for the characterization of random media [16–18].
Five different sorts of randomness were defined by Coleman [19], and three are relevant in the
present paper: mainly the µ-randomness, the ν-randomness and the λ-randomness.

1. µ-randomness: for a convex body K in R
n the µ-chord length distribution is defined as

Fµ(l) = Prob{l(M) � l : M ∩K �= ∅}, measured with the uniform density M of random
lines in the sense of the theory of geometric probability [20–22]. fµ(l) = dFµ(l)/dl

is the corresponding density function (chord length distribution function (CLD)). This
definition is also sometimes called isotropic uniform random chords (IUR chords) since
this randomness results if the convex body is exposed to a uniform, isotropic field of
straight infinite lines [8].

2. ν-randomness: a ν-chord is defined by a point inside K and a direction. Both point and
direction are from independent uniform distributions. In many fields of radiation research,
the term I-chord randomness or interior radiator randomness is used.

3. λ-randomness: a λ-chord is the straight line through two points chosen uniformly and
independently in the interior of the convex body.

Chord length distribution functions are different for different types of randomness. In the
following we use Kellerer’s notation. The index ρ = (µ, ν, λ) labels the different randomness.
Expectation values are labelled in the same way. For instance, fµ(l) is the CLD under µ-
randomness and lµ and l2

µ are the mean and the second moment of the µ-chord distribution
function. With this notation, the following results hold [9]:

fµ(l) = lµ

l
fν(l) (1)

and

fµ(l) = ln+1
µ

ln+1
fλ(l). (2)

Moreover, the fµ(l) distribution satisfies a couple of remarkable relations, the first one being
Cauchy’s formula,

lµ = (n − 1)
√

π
�[(n − 1)/2]

�[n/2]

V (K)

S(K)
(3)

and the second relation concerns the (n + 1)th moment of the chord,

ln+1
µ = n(n + 1)

π(n−1)/2
�

[
n + 1

2

]
V (K)2

S(K)
(4)
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where V (K) is the volume of K and S(K) its surface, and where � denotes the Euler Gamma
function (see [23] for a short review of these results and [20] for a complete proof ). Chord
length distributions are related to other distribution functions of importance in stereology such
as the distance distributions between two random points in K or the density distribution of
random line segments entirely contained inside K [24]. For the present study, we also need the
concept of ray distribution functions largely studied in a series of papers by Enns and Ehlers
[25–27] in the fields of applied probabilities and independently introduced by Dixmier in an
article on random packing [28]. A ray of length r is defined by the distance of a point inside K
to the frontier ∂K of K. Let Gρ(r) = Pr{|P1P2| � r : P1 ∈ K,P2 ∈ ∂K} be the distribution
function of the rays. Moreover, let gρ(r) = dGρ(r)/dr be the corresponding probability
density function (for instance, ρ = µ corresponds to rays coming from uniform randomness
and ρ = ν corresponds to the ν-randomness, i.e., P1 is selected uniformly within K and
P2 is the intersection point between a uniform direction from P1 and ∂K). The last result
concerns the characteristic function γ0ρ(r) originally introduced by Porod [29] as follows:
γ0ρ(r) represents the probability that a point at a distance r in an arbitrary direction from a
given point inside a convex body K is itself also in K. This function is related to the chord
length distribution function by

γ0ρ(r) =
∫ δ

r

dl fρ(l)
(

1 − r

l

)
(5)

where δ = max(l) is the greatest length inside K. See Guinier and Fournet’s textbook [30] for
a detailed study of the γ0ρ(r) function and its properties.

3. Constant-speed uniform random walks

In this section, we consider a special kind of diffusive random walk as follows. First, we select
a point uniformly distributed inside K, a convex body in R

n. Then, the particle is allowed
to move uniformly within a hypersphere of radius 	 � δ = max(chord) centred at the point
position as shown in figure 1. If the particle is inside K, the next point is selected again
according to the same uniform law. The process stops once a position is outside K for the first
time. In our model, a particle travels with a constant velocity, which is independent of the
jump length. Hence, the time spent inside K is proportional to the total length of the trajectory
and, in the following, one will be able to speak equivalently about the time spent inside K or
the total length of the trajectory. The total length of the trajectory L is defined as the length of
the multiple scattering trajectory from the original point inside K to the first exit through ∂K .
Let Pn (n = 0, 1, . . .) be the probability that a trajectory has n collisions and Ln the length of
such a trajectory. Ln is the expectation value of this trajectory. The expectation value of the
total length of the trajectory, L, is given by

L =
∞∑

n=0

PnLn (6)

and the mean number of collisions N per trajectory is

N =
∞∑

n=0

nPn. (7)

Consequently, L and N are fully described by the Pn and Ln. The probabilities {Pn} are easy
to obtain. Let P be the probability that a particle remains inside K after a collision (P = 1−P
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δ
K

X

Xn

n+1

∆

Figure 1. Trajectories are generated from a uniformly distributed point Xn inside a convex body
K and the next point Xn+1 is selected uniformly within a sphere of radius 	.

is the probability that a particle escapes K after a collision). From the hypothesis of a uniform
diffusion inside K,P is the same after each collision; consequently,




P0 = P

P1 = P × P

Pn = P n × P .

(8)

{Pn} are normalized to unity, since
∑∞

n=0 Pn = P × ∑∞
n=0 P n = P × 1/(1 − P) = 1.

Moreover,

N =
∞∑

n=0

nPn = P

∞∑
n=1

nP n = P

P
. (9)

Now, from the elementary concept of geometric probability, since the distribution of collisions
is uniform within K,P is given by

P = V (K)

V (Bn(	))
(10)

where V (Bn(	)) denotes the volume of an n-dimensional sphere of radius 	, which is

V (Bn(	)) = 2πn/2

n� [n/2]
	n. (11)

Before giving formal results concerning Ln, P is analysed using elementary results from
integral geometry permitting a more intuitive understanding of our future result. First, we
need to define the probability density function p(r) of having a jump of length r. Since the
new point is selected uniformly within a sphere of radius 	, and since the direction is uniform,
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p(r) is given by

p(r) = Sn−1(r)

V (Bn(	))
(12)

where Sn−1 is the surface area of an (n − 1)-dimensional sphere of radius r. Furthermore,
since Sn−1 = 2πn/2rn−1/�[n/2], from equation (12) we have

p(r) = nrn−1

	n
. (13)

Now, the probability density function of having a jump of length r inside K is just the probability
density function of having a jump of length r (i.e. p(r)) times the probability of being inside K
at a distance r from the sphere’s centre, which is just the Porod characteristic function γ0ν(r)

with ν-randomness (ν-randomness appears since either the origin or the direction of the jump
is uniform). By summing up over all r we obtain

P =
∫ 	

0
dr p(r)γ0ν(r). (14)

Substituting equations (5) and (13) into equation (14) leads to

P =
∫ 	

0
dl fν(l)

∫ l

0
dr

n

δn
rn−1

(
1 − r

l

)
= 1

(n + 1)	n

∫ δ

0
dl fν(l)l

n (15)

and then inserting equation (1) into the preceding equation yields

P = 1

(n + 1)	nlµ

∫ δ

0
dl fµ(l)ln+1 = 1

(n + 1)	n

ln+1
µ

lµ
. (16)

Finally, substituting equations (3) and (4) into equation (16) we recover the desired result for
P, namely equation (10). However, it is worth noting that conversely using equations (10)
and (16), and Cauchy’s formula (3) allows us to derive equation (4) involving only elementary
techniques.

In order to determine the probability distribution of the Ln we first consider the event: the
particle makes a jump of length r outside K and we introduce the corresponding probability
density function h(r). From the definition of h(r), this conditional probability density function
is the product of the two events’ probabilities: the particle makes a jump of length r (with
density probability p(r)) and this jump is outside K (which has probability 1 − γ0ν(r)), over
the probability that a particle makes a jump outside K which is just P . Thus, h(r) is

h(r) = 1

P
× p(r) × [1 − γ0ν(r)] . (17)

Inserting equations (1) and (5) into the preceding equation gives

h(r) = p(r)

P

[
1 −

∫ δ

r

dl fν(l)
(

1 − r

l

)]
= p(r)

P

[
r

lµ
+

1

lµ

∫ r

0
dl fµ(l)(l − r)

]
. (18)

Now, let us define the probability density function h(r, l) as the probability density function
of having a ray of length l knowing that the particle made a jump of length r outside K (recall
that a ray is the distance between a point inside K and a point on ∂K). From the definition of
h(r, l), we have h(r, l) = 0 for r > l and for r � l this conditional probability function is also
the product of the two events’ probabilities:

1. The particle makes a jump of length r outside K which has the density function h(r).
2. Given a jump of length r outside K, the probability of having a ray of length l is

gν(l)/
∫ r

0 du gν(u), where gν(l) is the ray distribution function with ν-randomness.
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K

Figure 2. Examples of trajectories with zero and two collisions inside a convex body K.

Consequently, h(r, l) is written

h(r, l) = h(r) × gν(l)∫ r

0 du gν(u)

(r − l) (19)

where 
(x) is the Heaviside step function. In appendix A it is proved that gµ(l) and gν(l)

are the same distribution functions; using this result and inserting the expression of gν(l) from
equation (A.5) into the integral in the numerator of equation (19) gives∫ r

0
du gν(u) =

∫ r

0
du

1

lµ

∫ δ

u

dl fµ(l) = r

lµ
+

1

lµ

∫ r

0
dl fµ(l)(l − r). (20)

Substituting this last equation and the expression of h(r) (equation (18)) into equation (19)
leads to the simplified result

h(r, l) = 1

P
p(r)gµ(l)
(r − l). (21)

From the expresion of h(r, l) it is straightforward to obtain the probability density function
Pout(l) of having a last jump of length l,

Pout(l) =
∫ 	

0
dr h(r, l) = 1

P
gµ(l)

∫ 	

l

dr p(r). (22)

Inserting equation (13) into equation (22) gives1

Pout(l) = 1

P
gµ(l)

(
1 − ln

	n

)
. (23)

Consequently, the mean jump outside K, denoted rout (see figure 2), is given by

rout = 1

P

∫ δ

0
dl lgµ(l)

(
1 − ln

	n

)
= 1

P

(
rµ − rn+1

µ

	n

)
(24)

1 A more formal proof of equation (23) is given in appendix B where the κ-randomness corresponding to the
randomness of the random walk is introduced.
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where rk
µ = ∫ δ

0 dl lkgµ(l) are the kth moments of the µ-ray distribution function. However,
Dixmier [28] linked the kth moments of the µ-chords and kth moments of the µ-rays through
the general formula lnµ = nlµrn−1

µ . Thus, we get

rout = 1

P lµ

(
l2
µ

2
− 1

	n

ln+2
µ

(n + 2)

)
. (25)

Next, we have to treat the case of a jump inside K. However, due to the Markovian behaviour
and the uniformity of the process, the distribution function of the distance between the jumps
inside K, rin(z), is the same as the distribution function of the distance between two random
uniformly distributed points in K. Such a distance distribution function has been widely covered
in the literature [20–22] and, more precisely, Piefke [31] proved that

rin(z) = Bnz
n−1

∫ δ

z

dl fµ(l)(l − z) with n � 2 (26)

where Bn = S(K)π(n−1)/2
[
V (K)2�

[
n+1

2

]]−1
(in particular for the two- and three-dimensional

cases: B2 = 2S(K)/V (K)2 and B3 = πS(K)/V (K)2). An immediate consequence of
Piefke’s result is that (see again [31] for a complete proof )

rin = Bn

(n + 1)(n + 2)
ln+2
µ . (27)

These expressions of rin and rout enable us to obtain the mean length Ln of trajectories that
have exactly n jumps. Indeed, since the process is Markovian, each jump is an independent
random variable, thus we have

Ln = nrin + rout. (28)

Inserting equation (28) into equation (6) and doing the summation leads to

L = P

P
rin + rout. (29)

Finally, inserting the analytical expressions of rin and rout into equation (29) as well as the
expression of the coefficients Bn gives

L = 1

P

l2
µ

2lµ
+

(
P

P

n

ln+1
µ

− 1

P	nlµ

)
ln+2
µ

n + 2
(30)

which is the expression of the mean length of the trajectories expressed only according to the
nth moments of the µ-chord length distribution.

4. Exact results for convex objects of simple geometric shapes

In this section, some analytical results are derived for several kinds of convex bodies: a disc
and a square for the two-dimensional case and a sphere for the three-dimensional case. For
both spherical cases 	 = D (diameter of the object) and consequently from equation (10), the
values of P are P = 1/4 for the disc and P = 1/8 for the sphere. One has also immediately
from equation (9) that the mean number of collisions is N = 1/3 for the two-dimensional case,
and N = 1/7 for the three-dimensional case. Moreover, the µ-CLD for a sphere of diameter D
in arbitrary dimension has been derived by Dixmier [28]. For the two- and three-dimensional
cases, the chord distribution functions are given, respectively, by

fµ(l) =




1

D2

l√
1 − l2

D2

(l � D)

0 (l > D)

two-dimensional case (31)
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Table 1. Simulation results.

Number of
trajectories Lanalytical Lsimulation Variance

Disc 109 0.980 866a 0.980 885 2.49 × 10−5

Square 109 0.513 422b 0.513 414 1.23 × 10−5

a From equation (35).
b From equation (37).

and

fµ(l) =



2l

D2
(l � D)

0 (l > D)
three-dimensional case. (32)

From the two preceding expressions of the CLD, the moments of the chord length distribution
can be obtained easily, and calculating these moments gives

lnµ =
√

π

2

�
[

2+n
2

]
�

[
3+n

2

]Dn two-dimensional case (33)

and

lnµ = 2

2 + n
Dn three-dimensional case. (34)

Inserting these expressions as well as the value of P into equation (30) gives the mean value
of the trajectory,

L =




208

135π
D two-dimensional case

99

245
D three-dimensional case.

(35)

Our last example is devoted to the square which has fewer symmetries. For a square of
side a, the CLD is given by [9]

fµ(l) =




1

2a
for 0 � l � a

a2

l2
√

l2 − a2
− 1

2a
for a < l �

√
2a.

(36)

From equation (36), it is straightforward to calculate the first four moments of the CLD needed
for equation (30). One has, respectively, lµ = π

4 a, l2
µ = [

1
3 −

√
2

3 + log(1 +
√

2)
]
a2, l3

µ = 3
4a3

and l4
µ = [

1
5 +

√
2

10 + 1
2 log(1 +

√
2)

]
a4. Inserting the four previous relations into equation (30)

with 	 = a
√

2 and P = 1/(2π) yields

L = 38 − 41
√

2 + 115 log(1 +
√

2)

15(2π − 1)
a. (37)

For the disc and the square, Monte Carlo simulations were performed in order to get
the behaviour of the distribution function of the total length of the trajectory. Details of
the different simulations are presented in table 1 where L has already very well converged
to the theoretical values given by equations (35) and (37). Figure 3 presents the distribution
function of the trajectories; each curve has a tail compared to the pure ray distribution function
that comes from the possibility of multiple scattering.
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0 2 4 6
R/l

0

0.2

0.4

0.6

0.8

1
disc

analytical: ray distribution
simulation: trajectory distribution

0 1 2 3
a/l

0

0.5

1

1.5
square

analytical: ray distribution
simulation: trajectory distribution

Figure 3. Trajectory and ray distribution functions versus dimensionless distance for a unit disc
and for a unit square.

Other analytical results such as the density function Pout(l) given by equation (23) are
accessible. An example is given for a square of side a. From equations (A.1) and (36), the ray
distribution function can be easily calculated,

gµ(l) = 4

πa
×




1 − l

2a
for 0 � l � a

l

2a
−

√
1 − a2

l2
for a < l �

√
2a.

(38)

Then, inserting the preceding equation into equation (23) leads to

Pout(l) = 4

a(π − a2/	2)

(
1 − l2

	2

)
×




1 − l

2a
for 0 � l � a

l

2a
−

√
1 − a2

l2
for a < l �

√
2a.

(39)

The analytical behaviour of Pout(l) is presented in figure 4 for two values of 	.

5. Extension

In this section, we extend our results to the case of trajectories generated from an entry point
to the first exit point. More precisely, the entry point is selected uniformly on the boundary of
the convex body K. Then, the first jump occurs uniformly in K (the probability that the particle
has its first jump inside K is 1). Therefore, results regarding the Pn (equation (8)) as well as
those of the mean number of collisions (equation (9)) remain unchanged. However, in order
to get the mean value of the total length of the trajectory, we need to calculate the mean value
of this first jump inside K (after this first jump, the process is in a state that corresponds to the
previous study since the particle is uniformly distributed within K). In other words, we have
to calculate the mean distance between two points, one on the boundary of K and the other
within K. However, this kind of randomness involving the selection of a random point on ∂K

(called the surface radiator randomness or S-randomness) has attracted less interest since it
has no known relation to the other kinds of randomness [34]. Nevertheless, the problem has
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0 0.5 1 1.5
l/a

0

0.5

1

1.5

P ou
t(

l)

analytical ∆=δ=a*sqrt(2)
analytical ∆=3*a

Figure 4. Pout(l) distribution functions versus dimensionless distance l/a for a square of side a.

been solved for some elementary shapes, and Matai [32] gives the following result for the
circle:

d = 16

9π
D. (40)

Adding this last distance to the mean length of the trajectories of section 3 gives the mean
length of the trajectories for the full process.

Of more interest is the following process when we consider a particle entering the convex
body with an isotropic uniform incidence. This hypothesis corresponds to an isotropic incident
flux in reactor physics [23]. Moreover, it also corresponds to the hypothesis leading to the
invariance property of diffusive random walks recently discovered by Blanco and Fournier
[35]. In the following, we consider a particle entering a convex body in R

n and making a
jump of length r according to the probabily density p(r) (in the case studied by Blanco and
Fournier p(r) has an exponential law p(r) = 1/λ exp[−r/λ], where λ is the mean free path).
In the continuation of this section, we calculate the distribution function of trajectories that
have no collision (i.e. first jump is out of K) as well as the distribution function of the first
jump inside K and their corresponding mean values. For this, we introduce the function γ1(r)

defined as follows. γ1(r) represents the probability that a point at a distance r from a given
point on ∂K in an arbitrary direction directed inside K is itself in K (see figure 5). Note that
we do not consider points at a distance r in the direction directed towards the outside of the
body since in this case the probability of having the points in K is trivially 0. This definition is
similar to that of the Porod function defined in section 2 when the point considered belongs to
the surface of the convex body. From this definition γ1(r) = 1 if the point belongs to a chord
of length greater than r, and γ1(r) = 0 if not. Consequently,

γ1(r) =
∫ δ

r

dl fµ(l) (41)
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r
n

K

Figure 5. Only points directed towards the interior of K contribute to the definition of γ1(r).

which is, up to a constant, the ray distribution function defined by Dixmier in [28]. With the
definition of γ1(r), let us do again the reasoning of section 2 with γ1(r) instead of γ0(r) except
that the measure considered is now uniform (µ-randomness). Therefore, we have

P =
∫ 	

0
dr p(r)γ1(r) =

∫ δ

0
du fµ(u)

∫ u

0
dr p(r) (42)

and

h(r) = 1

P
× p(r) × [1 − γ1(r)] = p(r)

P

∫ r

0
du fµ(u). (43)

The conditional distribution function h(r, l) is again given by equation (19) except that the
chords play the role of the rays; consquently h(r, l) may be written as

h(r, l) = h(r) × fµ(l)∫ r

0 du fµ(u)

(r − l) = 1

P
p(r)fµ(l)
(r − l) (44)

and the distribution functions of jumps that are outside and inside K at the first step are given
respectively by

Pout(l) =
∫ ∞

0
dr h(r, l) = 1

P
fµ(l)

∫ ∞

l

dr p(r) (45)

and

Pin(l) = p(l)

P
γ1(l). (46)

In order to illustrate our point, the convex body is taken as a sphere and we consider two
special types of random walks. The first is a constant jump random walk of length λ whose
distribution function is p(r) = δ(r − λ) and the second is the case studied by Blanco and
Fournier corresponding to p(r) = 1/λ exp[−r/λ]. Recalling that the µ-CLD for the sphere
is given by equation (32), after a little algebra, we obtain for the constant jump random walk


P = 1 − λ2

D2

Pout(l) = 2l

λ2

(λ − l)

Pin(l) = δ(l − λ)

(47)
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Figure 6. Pout(l) distribution functions versus dimensionless distance l/R for a sphere of radius R.

where λ is understood to be smaller than the sphere’s diameter. For the exponential case we
obtain 



P = 1 − 2λ2

D2 + 2λ
D2 (D + λ) e−D/λ

Pout(l) = l e−l/λ

λ2(1−(1+D/λ) e−D/λ)

Pin(l) = e−l/λ

λ

1− l2

D2

1− 2λ2

D2 + 2λ

D2 (D+λ) e−D/λ
.

(48)

Analytical results for the exponential case are presented in figure 6 for two different values
of λ.

6. Conclusion

Techniques from geometrical probabilities or integral geometry make it possible to study
some special types of random walks in convex bodies. In our studies, we restricted ourselves
to uniform random walks where the hypothesis of having at each step a position uniformly
distributed within the body is essential to apply the results of integral geometry directly.
Nevertheless, some preliminary results have been obtained for diffusive random walks in
convex bodies. Unfortunately, even for the simple case of an exponential probability density
law for the jump process, studying the whole diffusive random walk system remains an open
problem in the general context of diffusive random walks in bounded spaces [33]. Indeed,
due to this exponential form of the jump process, the points of diffusion are not uniformly
distributed within the body, and consequently the reasoning of section 3 cannot be directly
applied. However, we think that combining our approach, which is technically simple, with
purely geometric processes such as Poissonian random lines processes is a promising approach
to study rigorously diffusive random walks in bounded spaces.
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Appendix A. Equivalence of the µ- and ν-ray distribution functions

In this appendix, we prove the equivalence between the ν-ray distribution function and the ray
distribution function introduced by Dixmier [28] which corresponds, as we will see shortly, to
the µ-ray distribution function. This will enable us to use equivalently results from geometric
probability and Dixmier results (named radius distribution function in [28]). Indeed, Dixmier
considers rays supported by a random chord in the sense of geometric probability, i.e. in
the vocabulary of this paper µ-chord and consequently Dixmier studied µ-ray distribution
functions. Moreover, he established that since the rays of length r are supported by the chords
of length greater than r, the distribution of rays gµ(r) is related to the distribution of random
chords fµ(l) by

gµ(r) = 1

l̄µ

∫ δ

r

du fµ(u) (A.1)

where δ = max(l) as usual.
In the following, let K be a convex body in R

n, V (K) indicate its volume and S(K) its
surface. On one hand, Enns and Ehlers [26] derived the relation

1 − Gν(l) = V (K)

nωnln−1
d(l) (A.2)

where d(l) is the distance between two points chosen uniformly and independently in the
interior of K. On the other hand, as we already mentioned in section 3, Piefke [31] showed
that

d(l) = Bnl
n−1

∫ δ

l

du fµ(u)(u − l) with n � 2 (A.3)

where Bn = S(K)π(n−1)/2
[
V (K)2�

[
n+1

2

]]−1
. By putting the two preceding relations together,

one obtains

1 − Gν(l) = 1

l̄µ

∫ δ

l

du fµ(u)(u − l) (A.4)

where we have used Cauchy’s formula (equation (3)) by introducing lµ. Differentiating the
preceding equation yields

gν(l) = 1

l̄µ

∫ δ

l

du fµ(u) (A.5)

which is precisly the gµ(r) ray distribution function of Dixmier (equation (A.1)).

Appendix B. Chord length distribution and ray distribution

In this appendix, we derive the chord length distribution and the ray distribution generated by
the random walk process described in section 3 when the first point P is uniformly distributed
inside a convex body K and the second point Q is uniformly distributed outside K in a sphere of
radius 	 centred on the first point as shown in figure 7. More precisely, we want to express the
CLD generated by the random lines PQ in term of CLD corresponding to the µ-randomness.
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Figure 7. Two random points P and Q uniformly distributed within K and B	\K define the
κ-randomness.

For simplicity, we initially treat the two-dimensional case. Consider the perpendicular OH
from the origin O to the line passing through P and Q. Let θ be the angle this perpendicular
makes with the x-axis and ρ the distance of the line to the origin (see figure 7). Then, the pair
of points P and Q can also be determined by ρ, θ, t1 and t2, where t1 and t2 are the distances
of P and Q from H, respectively. With this notation, from Matai [32] (p 92) we have the
following lemma. Let M be the line PQ and dM = dρ dθ the element of the invariant measure
for M (µ-randomness), then

dP dQ = |t2 − t1| dt1 dt2 dM. (B.1)

Integrating over t1 and t2 leads to∫
|t2 − t1| dt1 dt2 =

∫ l

0
dt1

[∫ t1+	

l

dt2(t2 − t1) +
∫ l

−	+t1

dt2(t1 − t2)

]

=
∫ l

0
dt1

[−t2
1 + 2t1l + 	2 − l2]

= 	2l − l3

3
. (B.2)

The right-hand side of equation (B.1) reduces to (	2l − l3/3) dM where dM is the measure
of the µ-randomness. Hence, the relationship between the µ-random density fµ(l) and the
density of our case denoted by fκ(l) is the following:

fκ(l) = a

(
	2l − l3

3

)
fµ(l) (B.3)

where a is a normalization constant. Integrating over l and using relations (3) and (4) with
n = 2 gives

a = 1∫ ∞
0 dl

(
	2l − l3

3

)
fµ(l)

= 1

	2lµ − 1
3 lµ

3
= L(K)

S(K)(B	 − S(K))
(B.4)
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where S(K) is the surface of K and L(K) is its perimeter and where B	 = π	2 is the surface
of a disc of radius 	. Thus, fκ(l) is finally given by

fκ(l) = L(K)

S(K)(B	 − S(K))

(
	2l − l3

3

)
fµ(l). (B.5)

The normalization constant a has a simple probabilistic meaning: factor 1/[S(K)(B	−S(K))]
is due to the joint density of P and Q since P is uniform within K and Q is uniform within
B	\K . The last factor L(K) comes from the normalization of the µ-random chords which is
precisely equal to the perimeter of the convex body [20]. Inserting equations (1) and (2) with
n = 2 into the preceding equation gives the expression of fκ(l) in a more symmetric form,

fκ(l) = B	fν(l) − S(K)fλ(l)

B	 − S(K)
. (B.6)

In the limit of large 	, we get lim	→∞ f (l) = fν(l) which is the desired result. Indeed,
in this case S(K) becomes negligible compared to B	; the direction of PQ is then uniform
corresponding to the ν-randomness hypothesis.

Generalization to the n-dimensional case is straightforward using Santalo’s results, since
in R

n the density of points may be written as (see Santalo [20], p 237)

dP dQ = |t2 − t1|n dt1 dt2 dM (B.7)

where again t1 and t2 are the abscissas of P and Q on M. Integrating over t1 and t2 leads to∫
|t2 − t1|n dt1 dt2 = 2

n

(
	nl − ln+1

n + 1

)
(B.8)

and the normalized κ-chord length distribution is

fκ(l) = (n + 1)	nl − ln+1

(n + 1)	nlµ − lµ
n+1

fµ(l) (B.9)

or, by introducing the ν- and λ-chord densities as before,

fκ(l) = B	fν(l) − V (K)fλ(l)

B	 − V (K)
(B.10)

where B	 = ωn	
n is the volume of the n-dimensional sphere of radius 	 (ωn =

2πn/2/�[n/2]n) and where V (K) is the volume of K. From equation (B.10), we can say that
the randomness of the last jump or the κ-randomness has two parts. The first comes from a
ν-randomness (with coefficient B	/(B	−V (K))) and the second comes from a λ-randomness
(with coefficient −V (K)/(B	 − V (K))). Consequently, the κ-ray distribution also has two
parts, coming from the ν- and λ-randomness, respectively. More precisely,

gκ(l) = B	gν(l) − V (K)gλ(l)

B	 − V (K)
. (B.11)

However, in [26] it is established that

gλ(l) = ωnl
n

V (K)
gν(l) (B.12)

thus, equation (B.11) may be written as

gκ(l) = B	 − ωnl
n

B	 − V (K)
gν(l). (B.13)

Recalling that B	 = ωn	
n and that gν(l) = gµ(l), one obtains

gκ(l) = B	

B	 − V (K)

(
1 − ln

	n

)
gµ(l) (B.14)
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Figure 8. Chord length distribution functions versus dimensionless distance l/a for a square of
side a.
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Figure 9. Chord length distribution functions versus dimensionless distance l/R for a sphere of
radius R.

and since the coefficient B	/(B	 − V (K)) is just 1/P , we recover the distribution function
of the last jump, namely equation (23).

Examples of κ-chord length distribution are presented for the square in figure 8 and for
the sphere in figure 9.
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